The energy calibration system of the CUORE double beta decay bolometric experiment

Samuele Sangiorgio
on behalf of the CUORE collaboration

see also, on CUORE, Thomas Bloxham
in Session G14, Sunday morning
Two electrons sum energy (keV)

Neutral double beta decay ($\beta\beta^0\nu$) could be the key to answering some of the open questions of neutrino physics:

- absolute mass and hierarchy of masses
- Dirac or Majorana particles?

Our candidate $\beta\beta^0\nu$ nuclide is ^{130}Te

$Q_{\beta\beta^0\nu}(^{130}\text{Te}) = 2527.01 \pm 0.32$ keV

Sciellzo et al., nucl-ex/0902.2376

$Q_{\beta\beta^0\nu}(^{130}\text{Te}) = 2527.518 \pm 0.013$ keV

Redshaw et al., nucl-ex/0902.2139

Experimental signature:
peak at the transition Q value, enlarged by detector resolution, over the unavoidable background due to $\beta\beta^2\nu$

$$T_{1/2}^{0\nu} \sim \frac{1}{G^{0\nu} |M^{0\nu}|^2 \langle m_{ee} \rangle^2}$$

phase space factor
nuclear matrix elements

$$\langle m_{ee} \rangle = \left| \sum_{i=1}^{N} \lambda_i |U_{ei}|^2 m_i \right|$$
effective Majorana neutrino mass
The absorber is a 5x5x5 cm3 (790 g) crystal of TeO$_2$ which contains the $\beta\beta0\nu$ candidate 130Te.

The thermal signal is measured by means of an NTD Ge Thermistor.

$$R(T) = R_0 e^{\sqrt{\frac{T_0}{T}}}$$

An electrical read-out converts resistance changes into voltage pulses.

$\Delta T \sim 100 \, \mu\text{K/MeV}$
Cuoricino

Operated at GranSasso Underground Laboratory (Italy) from 2005 to 2008

44 5x5x5 cm³
and 18 3x3x6 cm³ TeO₂ crystals

detector mass: 40.7 kg;

¹³⁰Te mass: 11 kg

CUORICINO Updated Result

- Use new more accurate Q-value
- Updated statistics through Jan 2008

(total exposure ~ 18 yr*kg ¹³⁰Te):

$$T_{1/2}(90\% \text{ C.L.}) \geq 2.9 \times 10^{24} \text{ yr}$$
CUORE: Cryogenic Underground Observatory for Rare Events will be a tightly packed array of 988 bolometers - M ~ 200 kg of ^{130}Te

- Operated at Underground Gran Sasso laboratory (Italy)

CUORE Goals

- Average FWHM resolution: 5 keV
- Background in DBD region: 0.01 counts/keV/kg/y
- Predicted limit after ~5 years of running:
 \[T_{1/2} \sim 2.1 \times 10^{26} \text{ yr} \quad \Rightarrow \quad <m_\nu > \leq (45 - 70) \text{ meV} \]

Calibration of bolometers

• Bolometer are operated as perfect calorimeters
 – energy is the most relevant information extracted
• For each bolometer:
 – Voltage vs Energy relationship is needed
 – Calibration with γ sources of known energies (e.g. 232Th)
 – The pairs (E_i,V_i) are fitted with a proper calibration function
 – The calibration measurement is performed regularly (~ monthly)

• The calibration uncertainty
 – affects the resolution of the detectors
 – is one of the systematic errors in the determination of the \(\beta\beta 0\nu \) half life

![Graph showing peak identification and fit of calibration function](image)
CUORE calibration

- **Uniform illumination** of all detectors with 5 calibration lines clearly identified in the energy spectrum between 511 keV and 2615 keV

![Sum calibration spectrum of Cuoricino with 232Th source](image)

- **Sources can be replaced.** Other source isotopes can be used if necessary (e.g. 56Co has been studied)

- **Calibration time** does not significantly affect detector live time

- **Negligible contribution to radioactive background** in the $\beta\beta0\nu$ region

- **Minimize the uncertainty** in the energy calibration. Goal: residual calibration uncertainty in $\beta\beta0\nu$ region < 0.05 keV
CUORE calibration system

Insertion of 12 γ sources that are able to move, under their own weight, through a set of guide tubes that route them from the deployment boxes on the 300K flange down into position in the detector region.

source locations

top view of detector array with source positions

source locations

40K
300K
4K
0.7K
70mK
10mK

Lead shield

Lead shield

computer controlled motion box for source deployment

radioactive capsules crimped on a Kevlar string

Teflon cover

guide tubes

detectors

232Th or 56Co

~1.6mm

~10mm

Teflon cover
Prototype tests

- Source string goes down along guide tubes under its own weight
- Load cell output allows to monitor source position along the guide tube routing

![Lab mock up of guide tube routing](image)

![Graph of Load cell vs. # of turns of spool](image)
Cryogenic considerations

Sources of heat load:
- Conductance of the guide tubes
- Radiation funneled by guide tubes
- Conductivity of source string
- Radiation emitted by the source string
 - cooling mechanism required
- Friction during insertion/extraction
 - low friction materials + speed adjustment

<table>
<thead>
<tr>
<th>Stage</th>
<th>T [K]</th>
<th>Cooling power available to calibration [W]</th>
<th>Static heat load from guide tubes</th>
<th>Radiation from source string at 4K</th>
</tr>
</thead>
<tbody>
<tr>
<td>40K</td>
<td>40 – 50</td>
<td>~ 1</td>
<td>~ 1</td>
<td>--</td>
</tr>
<tr>
<td>4K</td>
<td>4 – 5</td>
<td>0.3</td>
<td>0.02</td>
<td>--</td>
</tr>
<tr>
<td>0.7K</td>
<td>0.6 – 0.9</td>
<td>0.55m</td>
<td>0.13m</td>
<td>0.07µ</td>
</tr>
<tr>
<td>700mK</td>
<td>0.05 – 0.1</td>
<td>1.1µ</td>
<td>negligible</td>
<td>0.1µ</td>
</tr>
<tr>
<td>10mK</td>
<td>0.01</td>
<td>1.2µ</td>
<td>1.07µ</td>
<td>0.065µ</td>
</tr>
<tr>
<td>detector</td>
<td>0.01</td>
<td>< 1µ</td>
<td>--</td>
<td>0.05µ + 0.5µ</td>
</tr>
</tbody>
</table>

Scheme of guide tube materials and thermal couplings

- Stainless Steel
- Copper
 - Perfect thermal coupling
 - Weak thermal coupling

internal | external

Detector
Cooldown of the sources

- Sources must be cooled to < 4K to meet heat load requirements
- Strong mechanical contact is needed between the source carrier and a heat sink at 4K

Squeezing mechanism

- Iso view
- Side view

Components:
- Detector region
- Lead shield
- 40K
- 300K
- 4K
- 0.7K
- 70mK
- 10mK
- Solenoid linear actuator
- Source string
- Pushing blade
Friction during source insertion/extraction

Sliding friction +

Friction of a string on a fixed rod

\[\frac{T_2}{T_1} = e^{\mu_k \beta} \]

- Exponential dependence on angle and friction coefficient

- Each guide tube routing has several bends and sloped sections

- Optimal sequence of staggered source extraction at variable speed to meet heat load requirements

- Simulated heat load, source speed = 0.1 mm/s

- Power dissipated [W] during extraction at constant speed

Distance traveled by source [m]
Conclusions

• The successful operation of CUORE, in the search for neutrinoless double beta decay, requires a reliable and efficient energy calibration system.

• The design of the calibration system is technically challenging and stringent requirements must be met, in particular when it comes to the integration in the unique CUORE cryostat.

• The design of the calibration system for CUORE is being finalized and prototype parts are currently being tested.