The Matter-Antimatter Asymmetry in the Universe

Larissa Ejzak
741 Experimental Nuclear Physics
December 15, 2008
The Problem

\[(i\hbar \gamma^\mu \partial_\mu - mc)\psi = 0\]

The Dirac equation treats particles and antiparticles \textit{equally}.

As the early universe cooled and expanded, most of the matter and antimatter produced in the Big Bang should have annihilated before antinucleon freezeout at \(\sim 20\) MeV.

\textbf{Predicted} \(\Omega_{\text{baryon}} \sim 4 \times 10^{-11}\) \quad \textbf{Observed} \(\Omega_{\text{baryon}} \sim 4 \times 10^{-2}\)

\textit{What additional mechanism can account for this 9-orders-of-magnitude difference?}
Approaching a Solution

Sakharov’s Conditions for producing a baryon asymmetry

1. Baryon number violation
2. Violation of C and CP
3. Conditions in which processes take place out of thermal equilibrium

Outline of this talk

I. Two classes of theories
 i. Baryogenesis
 ii. Leptogenesis
II. Local vs. global asymmetry – does matter dominate the *entire* universe?
III. Observational measurements and limits
Baryogenesis I: Electroweak Baryogenesis

Sakharov’s Conditions

1. Baryon number violation \(\rightarrow\) satisfied by sphaleron transitions \(\checkmark\) (see next slide)
2. Violation of C and CP \(\rightarrow\) satisfied by weak force \(\checkmark\)
3. Conditions in which processes take place out of thermal equilibrium \(\rightarrow\) satisfied if Electroweak Phase Transition was first-order \(\checkmark\) (see below)

Electroweak Phase Transition

- The transition to a phase with massive gauge bosons
- Whether it is first- or second-order depends on the mass of the Higgs boson

Image from Dine et al. (Ref. 2)
Sphaleron Transitions

Yang-Mills vacuum structure (non-Abelian gauge theory):

- Transitions among the different ground-state configurations conserve (B-L), but not B and L separately
- The probability of tunneling decreases as the universe cools, and within a given minimum (e.g. the universe today) B and L are conserved separately
- These processes also play an important role in the mechanism of leptogenesis (to be covered later in the talk)
The Downfall of EW Baryogenesis

First-order EWPT requires a light Higgs

- At least in the minimal SM with a single Higgs doublet, the Higgs mass must be less than ~80 GeV for the EWPT to be first-order
- However, the experimental lower limit is ~110 GeV

CP violation in CKM matrix too small

- Standard Model CP violation must involve all three fermion generations
- The lowest-order CP-violating diagram relevant to baryogenesis is suppressed by 12 Yukawa couplings (~10^{-20})

The baryon asymmetry that the SM is capable of producing is far too small – we need to look elsewhere
Baryogenesis II: Higher-Scale Baryogenesis

Planck-Scale Baryogenesis
- Quantum theories of gravity are expected to violate all global quantum numbers, including baryon number
- However, Planck scale is $\sim 10^{19}$ GeV; all Planck-scale processes would have occurred before inflation, which would have diluted away any baryon number produced prior

GUT-Scale Baryogenesis
- Supersymmetry introduces heavy particles whose decays violate B and CP, and which will occur out of equilibrium as the universe cools below the GUT scale
- GUT scale is $\sim 2 \times 10^{16}$ GeV; same inflation/dilution problem as Planck-scale baryogenesis
- It is possible that the reheating temperature T_{reheat} after inflation could be high enough for GUT-scale processes to come into play again, but then too many gravitinos would be produced to be consistent with observation (limit: $< 10^9$ GeV)
Can SUSY Save EW Baryogenesis?

Additional sources of CP violation ✓

The addition of the superpartners allows the possibility for a sufficient increase in the magnitude of CP violation present in the theory.

So the trick is ensuring out-of-equilibrium dynamics

First-order EWPT:

A light right-handed stop can allow a Higgs mass of up to \(\sim 115 \text{ GeV}\) in the MSSM, just barely consistent with limits

OR

Inflation:

If, by some fortuitous coincidence, inflation and electroweak symmetry breaking happen concurrently
Baryogenesis III: Affleck-Dine Baryogenesis

Assumes **SUSY** and **inflation**

1. Introduces scalar fields carrying B and L; when supersymmetry is unbroken, the potentials for these fields are nearly flat \rightarrow easily excited

2. Breaks supersymmetry (potentials no longer flat), and introduces B- and CP-violating terms

3. Fields fall down to ground state and decay into particles, carrying over the net baryon number produced
Leptogenesis: Starting from Seesaw

A Dirac mass term couples a right-handed field to a left-handed field or vice versa.

A Majorana mass term couples a right-handed field to another right-handed field or vice versa.

Type I Seesaw introduces heavy right-handed singlet neutrinos as counterparts to the familiar light neutrinos in order to provide a ‘natural’ explanation for the small mass of the neutrino:

\[
\begin{pmatrix}
0 & h_v \nu \\
h_v^T \nu & M_R
\end{pmatrix}
\]

Dirac terms: similar scale to quark, charged lepton sectors

Mass matrix for \((\nu_L, \nu_R)\) system

Majorana term: much heavier, \(M_R >> h_v \nu\)

\[= m_\nu \approx -h_v^2 \nu^2 / M_R \]

* Majorana neutrinos explicitly violate L

* L can be converted to B by sphaleron processes
Leptogenesis: A Simple Model

Add three heavy Majorana neutrinos N_i, where $M_1 \ll M_2, M_3$

N_1 can decay into e.g. Higgs and (anti)lepton as the universe cools

At tree level the $N_1 \rightarrow$ lepton and $N_1 \rightarrow$ antilepton rates are the same

CP violation arises from interference with higher-order diagrams, which bring in contributions from N_2, N_3

Image from Davidson et al. (Ref. 4)
Washout and Flavor Effects

The non-equilibrium dynamics for leptogenesis are provided by the expansion of the Universe – relative rates of processes are crucial.

For convenience, define:

\[
\tilde{m} = \sum \tilde{m}_{\alpha\alpha} = \sum_{\alpha} \frac{\lambda^*_{\alpha 1} \lambda_{\alpha 1} v_u^2}{M_1} = 8\pi \frac{v_u^2}{M_1^2} \Gamma_D,
\]

Higgs vev, \(\approx 174 \text{ GeV} \)

Total decay rate of \(N_1 \)

\[
m_* = 8\pi \frac{v_u^2}{M_1^2} H|_{T=M_1} \approx 1.1 \times 10^{-3} \text{ eV}.
\]

Hubble expansion rate

We can relate this to light neutrino properties:

\[
\tilde{m} > m_{\text{min}} \quad \text{and} \quad \text{“usually”} \quad \tilde{m} \gtrsim m_{\text{sol}}
\]

\[
\tilde{m} > m_* \quad \text{reaches thermal density} \quad n_1 \sim n_{\gamma}
\]

\[
\tilde{m} < m_* \quad \text{“weak washout”} \quad \text{reaches only} \quad n_1 \sim (\tilde{m}/m_\nu)n_{\gamma}
\]

Similarity, relative rates affect which flavor eigenstates are in equilibrium, and calculations are not flavor-covariant \(\rightarrow \) can have quantitative effects.
Leptogenesis: Some Variations

1. Supersymmetric thermal leptogenesis
 • Calculation substantially the same, differs by a few $O(1)$ numerical factors
 • Following the previous simple model, requires $T_{\text{reheat}} > \frac{M_1}{5} (\sim 10^9 \text{GeV}) \rightarrow$ gravitino problem

2. Less hierarchical N’s ($N_1 < N_2 < N_3$, but not $N_1 << N_2, N_3$)
 • Decay of heavier N’s can start to contribute, relaxing bound on T_{reheat}
 • “A resonant enhancement of the CP asymmetry in N_1 decay occurs when the mass difference between N_1 and N_2 is of the order of the decay widths.” [4]

3. Soft leptogenesis
 • Dominated by L- and CP-violating terms involving singlet sneutrinos

4. Dirac leptogenesis
 • Neutrinos are Dirac, no L-violation except sphaleron processes
 • Neutrinos’ Yukawa interactions very slow

5. Type II (triplet scalar) and III (triplet fermion) Seesaw
 • Impossible for minimal Type II without SUSY soft leptogenesis
 • Type III places an order-of-magnitude higher lower bound on T_{reheat}
Local vs. Global Asymmetry

In the ‘neighborhood’ of Earth, matter dominates. Is this because:

- There is a **global**, systematic predisposition to matter?
- There is a **local** asymmetry due to spontaneous symmetry breaking, but the universe as a whole has no asymmetry (e.g. is composed of domains of matter and antimatter, similar to unmagnetized iron cooled to $T<T_c$, $B=0$)?

Signals to look for:

- Extragalactic photon background from matter-antimatter annihilation at borders between domains
- Antimatter in cosmic rays that may have traveled from antimatter domains
Observations: Diffuse Gamma Spectrum

Assuming γ’s are produced in p̅p annihilation via π⁰ decay, observations of the diffuse γ spectrum indicate limits on the antimatter/matter fraction of:

- ≤10⁻¹⁵ in Galactic molecular clouds
- ≤10⁻¹⁰ in Galactic halo
- ≤10⁻⁵ at the cluster level

This corresponds to a domain size limit of ≥50 Mpc

It is still possible for there to be antimatter domains at the supercluster level, but it looks less and less likely...
Observations: Antiprotons and Positrons

Figure 3. Antiproton flux: experimental situation and theoretical predictions

Figure 4. Positron fraction experimental situation and theoretical predictions

Both can be produced through interaction of cosmic rays with the interstellar medium, difficult to disentangle primary flux
Observations: Antihelium Limits

Figure from Picozza et al. (Ref. 6)

Antinuclei in the CR flux would be a ‘smoking gun’ for surviving primordial antimatter.

Antihelium would be most abundant, and not necessarily indicative of large-scale structures.

Heavier antinuclei would indicate the presence of antimatter stars, in which antinucleosynthesis could occur.

Figure 2. Present experimental limits for the antihelium/helium ratio
References

