Underground physics

Bryce Littlejohn

12/16/08
Why?

Why do physics underground?

- Expensive!
- Relatively Dangerous!
- Inconvenient Locations!
- Difficult to get air/water/electricity/equipment access!
- Sounds great, huh?

CDMS SuperK SNO CUORE

http://www.sno.phy.queensu.ca/group/pics/sno6.jpg
http://today.slac.stanford.edu/images/2008/CDMS_icebox_lg.jpg
http://crio.mib.infn.it/wigmi/media/MauraPictures/CUORE-setup/SuperCUORE.png
Why?

To get away from backgrounds!

- Essential for some experiments
- CDMS can look for a SINGLE dark matter event!
- KamLAND looked for ~19 signal geoneutrinos in ~2 YEARS!
- Backgrounds must be VERY LOW!
Which Backgrounds?

- What backgrounds do we get away from?
 - Cosmic Rays
 - Alot of muons
 - Alot of muon Secondaries

![Graph showing cosmic ray backgrounds at different altitudes and depths.](image)

- Even at 25 m.w.e., the muonic and nucleonic contributions to the "star density" (nuclear interactions per gram of material per unit time) are about equal (<~0.01 inelastic interaction per kg per day). [Lal & P 1967]

![Graph showing neutron flux vs shielding depth.](image)
Muons

- **Muons:**
 - Created by decays of cosmic koans and pions: \(\frac{dN_\mu}{dE_\mu} \approx \frac{0.14 E^{-2.7}}{\text{cm}^2 \text{s sr GeV}} \left\{ \frac{1}{1 + \frac{E}{11 GeV}} + \frac{0.054}{1 + \frac{E}{850 GeV}} \right\} \)
 - Interactions with matter underground:
 - Ionization energy loss: more or less constant
 - Loss from bremsstralung, nuclear interactions, EM showers: proportional to \(E \)
 - Total Energy Loss: \(\frac{dE}{dX} = -\alpha - \frac{E}{\xi} \), \(\xi^{-1} = \xi_B^{-1} + \xi_{\text{pair}}^{-1} + \xi_{\text{hadronic}}^{-1} \)
 - General solution for energy: \(< E(X) > = (E_0 + \epsilon) e^{-X/\xi} - \epsilon.\)
 - Only high-energy muons go deep

<table>
<thead>
<tr>
<th>Location</th>
<th>Depth (km.w.e.)</th>
<th>(E_0^{\text{min}}) (TeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KGF</td>
<td>(\leq 7)</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>(many levels)</td>
<td>(deepest level)</td>
</tr>
<tr>
<td>Homestake</td>
<td>4.4</td>
<td>2.4</td>
</tr>
<tr>
<td>Mont Blanc</td>
<td>(\sim 5)</td>
<td>(\sim 3)</td>
</tr>
<tr>
<td>Fr jus</td>
<td>(\sim 4.8)</td>
<td>(\sim 2.5)</td>
</tr>
<tr>
<td>Gran Sasso</td>
<td>(\sim 4)</td>
<td>(\sim 2)</td>
</tr>
<tr>
<td>IMB</td>
<td>1.57</td>
<td>0.44</td>
</tr>
<tr>
<td>Kamiokande</td>
<td>2.7</td>
<td>(\sim 1)</td>
</tr>
<tr>
<td>Soudan</td>
<td>1.8</td>
<td>0.53</td>
</tr>
</tbody>
</table>

(all from Gaisser)
Muons

• How do muons mimic signals?
 • Direct energy deposition in detector
 • Sometimes extremely high
 • Continuous: can deposit any amount of energy
 • Neutrons, radioisotopes

• How do we minimize this background?
 • Charge, high energy make muons easy to veto with:
 • Proportional or Scintillation Counters
 • Resistive Plate Chambers
 • Others
 • Muons can contribute largely to detector dead time in underground experiments.
Neutrons

\[\mu^- + A(Z, N) \rightarrow \nu_\mu + A(Z - 1, N + 1). \]

- **Production methods:**
 - Muon capture: goes as \(Z^4 \)
 - Electromagnetic showers: goes as \(Z^2 \)
 - Spallation via virtual photon exchange
 - Secondary neutrons

- **Model with FLUKA, GEANT**

Figure 2 Flux of cosmic ray secondaries and tertiary-produced neutrons in a typical Pb shield vs shielding depth. Neutron flux from natural fission and \((a, n)\) reactions is also shown. The nucleonic component is more than 97% neutrons.
How do neutrons mimic signals?

- Direct nuclear collisions: continuous spectra
- Create radioisotopes with various signals: discrete
 - Beta-neutron sources: \(^{8}\)He, \(^{9}\)Li, for example
 - Beta-only: \(^{9}\)C, \(^{12}\)B, \(^{12}\)N, for example
 - Gammas: \(^{60}\)Co, for example
- Q-values of decays could be in right range to mimic energy deposition of signal

Main backgrounds are determined by the energy scale of the experiment:

- Example: fast (Daya Bay) vs. slow (CDMS) neutrons
- \(^{60}\)Co (CUORE) vs. \(^{206}\)Pb (GERDA)
Other Sources of Radioactivity

- So, underground, we minimize cosmic-related background.
- Other backgrounds?
Other Sources of Radioactivity

• So, underground, we minimize cosmic-related background.

• Other backgrounds?
 • Natural radioactivity
 • Radiation in building materials
 • Radon
238U and 232Th, associated decay series: most common radionuclides; also 40K

From Formaggio
Natural Environmental Radioactivity

- On surface, cosmic ray photons are <1% the number of gamma rays from U/Th
- U/Th/K also common underground:
 - 232Th: 44 Bq/kg, 238U: 36 Bq/kg, 40K: 850 Bq/kg
- How to reduce: shielding!
 - Lead
 - Water
 - Anything with low radioactivity

Figure 8: Background spectra of an enriched Ge detector of the Heidelberg-Moscow collaboration (2.3 kg active volume) unshielded at 15 m.w.e. (top) and shielded with 40 cm lead at 3400 m.w.e. (bottom).
Radioactivity in Building Materials

- Shielding (i.e. Pb) contains medium-life radioactive isotopes
 - By protecting from some gamma backgrounds (U/Th/K), you introduce another!

- Other radioactive building materials
 - Bulk materials
 - Welds, solder

- Solutions:
 - Use relatively radiopure materials
 - Low-radioactivity metals and welding materials
 - Plastics or organics have radioactive nuclei (14C), but much less
 - Aged shielding materials: CUORE uses ancient Roman Pb
 - Perform extensive radioactivity checks
Radon

- Part of Uranium/Thorium chains
 - Contains same signatures as part of U/Th chains
 - 222Rn is especially bad: h.l. ~ 22y

- Radon is tricky:
 - Gaseous
 - About 1300 Bq/m2/s seeps up from the ground!
 - 1 mm3 of air contains as much activity as that measured in solar neutrino exps!
 - Rn daughter clinging, plating on surfaces

- To avoid:
 - Don’t expose detector to air
 - Pump pure nitrogen
Where do we build underground exps?

- Factors to consider: overburden and cost
- Digging is a prohibitive cost: Daya Bay early estimate: $1600/m of tunnel
- Acceptable background level determines necessary overburden
- Avoid going far underground: background veto methods: timing and directionality cuts (accelerators), high event rate (Daya Bay),
What do we do underground?

- So, cosmic and other backgrounds reduced!
- What experiments does this make us want to do?
 - High-precision experiments
 - Double Beta Decay
 - Proton Decay
 - Weakly interacting particle searches
 - Neutrinos
 - Dark Matter (WIMPs)

DEAP/CLEAN

HyperK
(from Chen)

KamLAND

NEMO
(from Chen)
Neutrinoless Double Beta Decay

- double beta decay - rare nuclear process happens:
 - If Energetically allowed
 - If angular momentum suppresses single beta decays
- Neutrinoless double beta decay probes:
 - Dirac or Majorana?
 - Neutrino Mass
 - Mass higherarchy
- Detect peak at $0\nu\beta\beta$ Q-value
 - Many ways to do this!

From Chen

<table>
<thead>
<tr>
<th>isotope</th>
<th>Q-value [MeV]</th>
<th>natural abundance</th>
</tr>
</thead>
<tbody>
<tr>
<td>^{48}Ca</td>
<td>4.27</td>
<td>0.19%</td>
</tr>
<tr>
<td>^{150}Nd</td>
<td>3.37</td>
<td>5.6%</td>
</tr>
<tr>
<td>^{96}Zr</td>
<td>3.35</td>
<td>2.8%</td>
</tr>
<tr>
<td>^{100}Mo</td>
<td>3.03</td>
<td>9.6%</td>
</tr>
<tr>
<td>^{82}Se</td>
<td>3.00</td>
<td>8.7%</td>
</tr>
<tr>
<td>^{116}Cd</td>
<td>2.80</td>
<td>7.5%</td>
</tr>
<tr>
<td>^{130}Te</td>
<td>2.53</td>
<td>34%</td>
</tr>
<tr>
<td>^{136}Xe</td>
<td>2.48</td>
<td>8.9%</td>
</tr>
<tr>
<td>^{76}Ge</td>
<td>2.04</td>
<td>7.8%</td>
</tr>
</tbody>
</table>

From P. Vogel [hep-ph 0807.2457]

From S. Sangiorgio
Neutrinoless Double Beta Decay

• Possible detection methods:
 • Bolometers: Cuore, Cuoricino - Detect phonons
 • Liquid TPC: EXO - Scintillation, tracking, radioassay
 • Scintillator: CANDLES, SNO+: Detect scintillation light
 • Tracking: NEMO - Track electrons

• Major Backgrounds:
 • Natural radioactivity in experiment
 • Any decay depositing energy near or above experiment’s Q-value
Proton Decay

- Various conservation violations: B, L, B+L, B-L, etc.
- Non-Standard model processes!
 - for example: $p \rightarrow e^+ + \pi^0$; $p \rightarrow K^+ + \bar{\nu}$
- Limits set on various processes
 - Predicted by various GUT models
- Experiments: Cerenkov detectors
 - Detect relativistic particles
 - products of
 - cosmic muons
 - muon secondaries
 - neutrino interaction products
 - other backgrounds
 - Past and current: See chart
 - Future: HyperK, UNO, Memphys

- Backgrounds: atmospheric neutrinos

From Chen
Dark Matter

• Dark Matter: What is it?
 • Possible answer, say supersymmetric theories: WIMPs

• How to detect them?
 • Nuclear recoil: keV of energy deposited

• Experiments
 • See figure: many bkg. discrimination methods

• Backgrounds
 • Exact expected energy is unknown
 • Theory: < 200keV nuclear recoil
 • Any low-energy non-WIMP nuclear recoil is a background
Neutrinos!

- Why look for neutrinos?
 - Understanding neutrinos, standard model
 - Oscillation: mass splitting, oscillation parameters
 - Fundamental symmetries: lepton conservation, CP violation
 - Experiments: Daya Bay(!), KamLAND, SuperK, MINOS, SNO
 - Understanding extraterrestrial sources
 - The sun: composition, nucleosynthesis, etc.
 - Experiments: Borexino, SNO, KamLAND
 - Supernovae: early warning system, neutrino mass
 - SuperK, IMB
 - Understanding Earth’s geology
 - U/Th geoneutrinos: terrestrial power flux
 - Experiments: KamLAND

- How to see them:
 - Water Cerenkov
 - Liquid scintillator detectors
 - Liquid Argon TPC

figure from P. Vogel

From Formaggio
Neutrinos!

- **Backgrounds:**
 - Backgrounds largely depend on desired energy range:
 - Example: Borexino results
 - Example: SNO+ sensitive to CNO \(\nu \)
 - Example: Kamland and \(^{210}\)Pb, \(^{85}\)Kr, \(^{40}\)K
 - Varied \(\nu \) energies, many different backgrounds
 - Backgrounds also depend on detection method:
 - Daya Bay: muon-induced radioisotopes
 - Aside: KamLAND: main bkg: neutrinos!
 - geoneutrinos vs. reactor neutrinos
Summary

- Underground physics experiments are defined by their low-background requirements
 - Reduce cosmic related backgrounds by going underground, vetoing muons
 - Reduce terrestrial backgrounds by shielding, using very clean building materials.
- A wide variety of nuclear physics discoveries can be made underground
 - The nature of the neutrino
 - The identity of dark matter
 - Discovery of new physics
- The future is waiting... underground!
References

• Chen, Mark, *Experimental Overview*, Talk given at OCPA 2008 Underground Physics Workshop, Hong Kong,

• Chu, Ming-chung, *The Aberdeen tunnel experiment*. Talk given at OCPA 2008 Underground Physics Workshop, Hong Kong,

• Poon, Allen, *Backgrounds in Underground Experiments*, Talk given at OCPA 2008 Underground Physics Workshop, Hong Kong,

• Samuele Sangiorgio: conversation and various talks
