Physics 736

Experimental Methods in Nuclear-, Particle-, and Astrophysics

Course Introduction

Karsten Heeger
heeger@wisc.edu
Course Organization

Instructor
Prof. Karsten Heeger
Email: heeger@wisc.edu
Office: Chamberlin Hall, room 4287

Lectures & Office Hours
- **Lectures:** Mon, Wed, 2.30-3.45pm, room 2223
 course will meet twice a week
- **Office Hours:** after the lectures, or email me to fix a time

Course Webpages
- Course info, schedule, homework, lectures, etc
 http://neutrino.physics.wisc.edu/teaching/PHYS736

 Library Course Reserve Page with protected information

Grader
Walter Pettus
Email: pettus@wisc.edu
Course Organization

Instructor
Prof. Karsten Heeger
Email: heeger@wisc.edu
Office: Chamberlin Hall, room 4287

Lectures & Office Hours
Lectures: Mon, Wed, 2.30-3.45pm, room 2223
course will meet twice a week
Office Hours: after the lectures, or email me to fix a time

Course Webpages
Course info, schedule, homework, lectures, etc
http://neutrino.physics.wisc.edu/teaching/PHYS736
Library Course Reserve Page with protected information

Grader
Walter Pettus
Email: pettus@wisc.edu
Course Organization

Instructor
Prof. Karsten Heeger
Email: heeger@wisc.edu
Office: Chamberlin Hall, room 4287

Lectures & Office Hours
Lectures: Mon, Wed, 2.30-3.45pm, room 2223
course will meet twice a week
Office Hours: after the lectures, or email me to fix a time

Course Webpages
Course info, schedule, homework, lectures, etc
http://neutrino.physics.wisc.edu/teaching/PHYS736

Library Course Reserve Page with protected information

Grader
Walter Pettus
Email: pettus@wisc.edu

this is the one-stop, must-visit info page for the course
Course Website

- All materials will be posted on course website, except for handwritten lecture notes.
Course Goals

• My course goals:

 – provide overview of experimental techniques used in nuclear, particle, and astrophysics
 – develop understanding of detectors and experimental techniques
 – provide the tools and basic to start research: hardware, statistics, analysis etc
 – convey basic statistical techniques and error analysis
 – make you appreciate what goes into a detector design
 – prepare you for research...
 – you will learn as much as you put into this course!
Reading

• Reading will be assigned in preparation for lectures and to provide more details and depth than I can cover.

• It is a chance for you to “explore” a topic.

• We will discuss reading material in class.

• I may ask someone to summarize a paper or topic that was assigned for reading, or lead a discussion. It will be a discussion.
Homework, Projects, Exams

- Homework and course reading will be assigned on a roughly biweekly basis

- No final exam, but final project

- You will get time to work on final project.

- We will get together as a course for a couple of afternoons during last week of semester to hear presentations.
Computational Tools

• Some homework problems and the final project may require some computational work.

• Tools I can recommend and am familiar with
 – ROOT
 – Mathematica
 – C/C++

• You can choose the tool you want or that is used in your research area of interest (Python, etc...)
Grades

• We need to give grades but you shouldn’t worry about them. They should not be a major concern at this point. This is graduate school and you are getting ready for research.

• Grades will be based on:
 – participation in class (~30%)
 – homework (~30%)
 – final project (~40%)

• Attendance and participation is required. Please email me if you will need to miss class.
Course Goals & Feedback

• I welcome feedback and suggestions often and early.
 – Don’t wait until the end of the semester. This would be a waste of everyone’s time.
 – Your input will help shape this class.
 – I welcome suggestions on topics you are interested in, would like to see covered. Things that work/don’t work in class

• Leaving feedback
 – For undergraduate classes I usually have an anonymous comment box in classroom. Hope this is not necessary.
 – I prefer if you come and see me, or email me with feedback.
Textbooks

• There is no one, single good textbook for this course. We will use chapters from a variety of books.

• As a researcher I recommend you own at least one experimental methods and one statistics book. The books I recommend are:
 – Leo “Techniques for Nuclear and Particle Physics Experiments”
 – Bevington, “Data Reduction and Error Analysis for the Physical Sciences”, or

• Scanned PDFs of chapters will be available to registered course participants on library reserve page.
 – https://

• Supplemental course material will also be posted on course website.
 – http://neutrino.physics.wisc.edu/teaching/PHYS736/

• All textbooks are available in the library.
Textbooks - Some Comments

• **Detectors:**
 – **Knoll:** good reference book for experimentalist, a good coverage of most topics, not quite in enough depth, focus on hardware and measurements
 – **Leo:** similar to Knoll, shorter, not quite the same coverage, not quite as advanced
 – **Green:** theory, hardware, and design of particle physics detectors, relatively recent, published in 2000
 – **Longair:** high energy astrophysics, theory and detectors
 – **Pobell, Enss:** Low temperature detectors and physics

• **Statistics/Error Analysis**
 – **Bevington:** the standard in error analysis
 – **Barlow:** good intro into statistics
 – **James:** more on statistical techniques

• **Reference**
 – **Particle Data Group:** good review articles, concise and dense
Course Schedule

- See http://neutrino.physics.wisc.edu/teaching/PHYS736
- The first 2 weeks

<table>
<thead>
<tr>
<th>Week#</th>
<th>Day</th>
<th>Date</th>
<th>Topics</th>
<th>Required Reading</th>
<th>Homework&Notes</th>
<th>Slides</th>
</tr>
</thead>
</table>
| 1 | 1 | Wed Jan 23, 2013 | **Course Introduction**
- organization, syllabus, textbooks
Radiation and Matter:
- nuclear processes, radiation sources and radioactivity | | | |
| 2 | 2 | Mon Jan 28, 2013 | **Examples of Particle Detectors**
(Prof. Maruyama):
- CUORE, DM-Ice, and IceCube (detectors in the cold) | PDG, detectors for non-accelerator physics | | lect2 |
| 2 | 3 | Wed Jan 30, 2013 | **Radiation and Matter:**
- nuclear processes, radiation sources and radioactivity
Interaction of Radiation with Matter:
- neutrons
- photons | PDG, interaction with matter
PDG, common radioactive sources
PDG, radioactivity | HW#1 due Feb 6 | lect3 |
| 3 | 4 | Mon Feb 4, 2013 | **Interaction of Radiation with Matter:**
- neutrons
- photons | Longair, chapter 4
Longair, chapter 2
PDG, interaction with matter | | lect4 |
| 3 | 5 | Wed Feb 6, 2013 | **Interaction of Radiation with Matter:**
- photons
- charged particles | Longair, chapter 2
Longair, chapter 5
PDG, interaction with matter | HW#2 due Feb 13 | lect5 |
Course Schedule

- See http://neutrino.physics.wisc.edu/teaching/PHYS736
- The first 2 weeks

<table>
<thead>
<tr>
<th>Week#</th>
<th>Day</th>
<th>Date</th>
<th>Topics</th>
<th>Required Reading</th>
<th>Homework&Notes</th>
<th>Slides</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Wed Jan 23, 2013</td>
<td>Course Introduction
- organization, syllabus, textbooks
Radiation and Matter:
- nuclear processes, radiation sources and radioactivity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>Mon Jan 28, 2013</td>
<td>Examples of Particle Detectors
(Prof. Maruyama):
- CUORE, DM-Ice, and IceCube (detectors in the cold)</td>
<td>PDG, detectors for non-accelerator physics</td>
<td></td>
<td>lect2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>Wed Jan 30, 2013</td>
<td>Radiation and Matter:
- nuclear processes, radiation sources and radioactivity
Interaction of Radiation with Matter:
- neutrons
- photons</td>
<td>PDG, interaction with matter
PDG, common radioactive sources
PDG, radioactivity</td>
<td>HW#1 due Feb 6</td>
<td>lect3</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>Mon Feb 4, 2013</td>
<td>Interaction of Radiation with Matter:
- neutrons
- photons</td>
<td>Longair, chapter 4
Leo, chapter 2
PDG, interaction with matter</td>
<td></td>
<td>lect4</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>Wed Feb 6, 2013</td>
<td>Interaction of Radiation with Matter:
- photons
- charged particles</td>
<td>Longair, chapter 2
Longair, chapter 3
Longair, chapter 4
Leo, chapter 2
PDG, interaction with matter</td>
<td>HW#2 due Feb 13</td>
<td>lect5</td>
</tr>
</tbody>
</table>
Course Schedule

- See http://neutrino.physics.wisc.edu/teaching/PHYS736
- The first 2 weeks

<table>
<thead>
<tr>
<th>Week#</th>
<th>Day</th>
<th>Date</th>
<th>Topics</th>
<th>Required Reading</th>
<th>Homework&Notes</th>
<th>Slides</th>
</tr>
</thead>
</table>
| 1 | 1 | Wed Jan 23, 2013 | **Course Introduction**
- organization, syllabus, textbooks

Radiation and Matter:
- nuclear processes, radiation sources and radioactivity | | Intro, | |
| 2 | 2 | Mon Jan 28, 2013 | **Examples of Particle Detectors**
- (Prof. Maruyama):
 - CUORE, DM-Ice, and IceCube (detectors in the cold) | **PDG, detectors for non-accelerator physics** | HW#1 due Feb 6 | lect3 |
| 2 | 3 | Wed Jan 30, 2013 | **Radiation and Matter:**
- nuclear processes, radiation sources and radioactivity

Interaction of Radiation with Matter:
- neutrons
- photons | **Leo, chapter 1&2**
PDG, interaction with matter
PDG, common radioactive sources
PDG, radioactivity | | |
| 3 | 4 | Mon Feb 4, 2013 | **Interaction of Radiation with Matter:**
- neutrons
- photons | **Longair, chapter 4**
Leo, chapter 2
PDG, interaction with matter | HW#2 due Feb 13 | lect5 |
| 3 | 5 | Wed Feb 6, 2013 | **Interaction of Radiation with Matter:**
- photons
- charged particles | **Longair, chapter 2**
Longair, chapter 3
Longair, chapter 4
Leo, chapter 2
PDG, interaction with matter | | |

introductions to different experimental techniques
Any Questions & Concerns?

• Email me (Karsten Heeger) with any questions or concerns: heeger@wisc.edu
Now, two class exercises ...
• Please write down your name and email, and if you are taking this course for credit vs audit.

• I will use this to establish a class email list. Email will be an important form of communication outside class time.
Course Goals

• What are your fields of interest?
 – (Please make a poll.)

 • high-energy?
 • astro/cosmology?
 • neutrino?
 • other?

 • experiment?
 • theory?
Course Goals

• What do you hope to get out of the course? What are your expectations for Phys 736?
Course Goals

- What do you hope to get out of the course?
- What are your expectations for Phys 736?
 - take 2 min to write down some personal goals on piece of paper
 - what would you like to learn?
 - can be general or specific